THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

В существующей практике качество работающего в дизелях масла контролируются по следующим показателям:

кинематическая вязкость;

температура вспышки в открытом тигле;

щелочному числу;

кислотному числу;

капельной пробе.

Измерение вязкости - замер времени, которое требуется для протекания определенного количества масла через калиброванное отверстие. Для измерения вязкости используют кинематическую вязкость. Единица измерения - сСт, один сСт представляет вязкость дистиллированной воды при 20,2 град.Цельсия.

Чрезмерное увеличение вязкости масла может нарушить его нормальную циркуляцию в двигателе и не обеспечить достаточную смазку трущихся деталей.

Попадание в масло 5 % ДТ снижает его вязкость на 15 - 18 %, а температуру вспышки на 30% .

По мнению западных фирм не допускается попадание в масло более 5 % топлива и рекомендуется производить смену масла если его вязкость изменится в большую или меньшую сторону на 20 - 25 % от вязкости свежего масла.

Но важно не только абсолютное значение величины вязкости работающего масла, а и причины, вызвавшие его изменения.

Если вязкость масла повышается вследствие накопления в нем нерастворимого осадка, то в этом случае можно допустить повышение вязкости до 30 % при условии, что масло обладает достаточными диспергирующими свойствами.

Большую часть загрязнений, находящихся в масле составляют продукты неполного сгорания топлива, вносимые в масло вместе с прорывающимися из цилиндров в картер газами. Чем выше форсировка двигателя, тем хуже его техническое, особенно ЦПГ.

При этом: при всех прочих равных условиях скорость загрязенния масла в тронковых двигателях в 5 - 10 раз выше, чем в крейцкопфных. Размеры и число частиц нерастворимых в масле загрязнений, если оно не содержит диспергирующих присадок, возрастают с увеличением продолжительности работы масла в двигателях. В масле, содержащем диспергирующие присадки, нерастворимые загрязнения находятся в тонкодисперсном состоянии и в процессе работы масла в двигателе увеличивается лишь количество частиц, образующих загрязнения.

Допустимое количество нерастворимых в масле загряз нений, которые могут содержатся в нем без ухудшения состояния двигателя, возрастает с увеличением диспергирующих свойств масла. 1% - эту величину следует принять для крейцкопфных двигателей, где к чистоте масла предъявляются более жесткие требования, чем к маслам тронковых двигателей.

Щелочное число

Вводимые в моторные масла щелочные присадки представляют собой соединения щелочно- земельных элементов кальция, бария или магния, помимо нейтрализации кислот эти присадки, обладающие высокими диспергирующими свойствами, предохраняют поверхности деталей двигателя от образования на них лаков и нагаров. В начальный период щелочное число понижается, а затем стабилизируется на определенном уровне. Длительность сохранения этого уровня показывает насколько применяемое масло соответствует условиям его работы.

В тронковых двигателях к щелочному числу предъявляются более жесткие требования т.к. оно всегда должно содержать необходимое количество активных щелочных присадок для нейтрализации сернокислых продуктов, образующихся в цилиндрах дизеля при его работе на сернистом топливе, а также поддержанием чистоты деталей ЦПГ.
Для этих двигателей щелочное число свежего масла определяется степенью их форсировки и качеством применяемого топлива, а уровень, ниже которого не должно снижаться щелочное число масла, работающего в двигателе, обычно регламентируется заводом строителем и фирмами, вырабатывающими масла.

При наличии в масле активных диспергирующих присадок можно допустить снижение щелочного числа масла:

во вспомогательных дизелях до 2,0 мг КОН/г;

в главных среднеоборотных дизелях - до 5,0 мг КОН/г;

МОД - щелочное число не должно падать ниже 10% от щелочного числа свежего масла.

Для судовых ВД, работающих на диз.топливе min. уровень щелочности, обеспечивающий необходимые нейтрализующие и моющие свойства может быть принят 1,5 - 2,0 мг КОН/ г;

Для ГД СОД при работе на ДТ уровень не должен быть ниже 6 - 8 мг КОН / г.

КИСЛОТНОЕ ЧИСЛО

В щелочных маслах появление минеральных кислот может иметь место только при полном срабатывании щелочных присадок.

Присутствие воды в масле значительно усиливает реакционную способность кислоты.

При отсутствии воды в масле или незначительном его количестве (следы) общая кислотность масла не должна превышать 2,0 мг КОН/г.

Величина кислотного числа мала численно будет равна количеству едкого калия (КОН), необходимого для нейтрализации кислоты, содержащейся в 1 гр. масла, выражается в мг КОН. Кислотность в маслах, содержащих щелочные присадки вне зависимости от ее величины не может являтся браковочным показателем до тех пор, пока масло будет содержать активные присадки т.е. в пробах масла наряду с кислотностью будет определяться и щелочность.

Повышенная скорость накопления в масле кислотных продуктов указывает на неисправности в работе двигателя (пропуск газов, перегрев масла в каком - либо узле и т.д.).

Температура вспышки

Не должна быть ниже 170 град. Цельсия; в противном случае масло подлежит замене.

Допустимое содержание воды в масле не должно превышать 1%.

Допускается содержание влажного масляного шлама до 3.0 % в циркуляционных маслах крейцкопфных дизелей и до 5.0 % в тронковых.

Периодичность контроля:

ВД - 150 часов,

ГД МОД - 500 часов.

Для лаборатории- ВД 500 часов, МОД - 1500 часов.

Смазывающая способность

Смазывающая способность, которой обладает масло, снижает сухое трение между двумя перемещающимися относительно друг друга твердыми поверхностями. Такое трение между металлическими деталями различных машин и механизмов при отсутствии смазки приводит к нагреву деталей, появлению задиров на их поверхностях и, в конечном итоге, к заклиниванию трущихся деталей. Наличие смазки обусловливает замену сухого трения трением между молекулами смазывающей жидкости.
Приборов, позволяющих измерить смазывающую способность масел, не существует. Однако существуют методы трибологического анализа, позволяющие изучать предельные значения сил трения, возникающих, например,при запуске компрессора в отсутствие и при наличии смазки, которые соответствуют непосредственному контакту «металл по металлу» для трущихся деталей. Наиболее часто для определения характеристик процесса трения используется так называемый метод Фалекса, заключающийся в следующем; металлическая игла приводится во вращательное движение внутри металлических губок, к которым приложена известная сила, нажимающая иглу. Во время испытаний определяется износ двух этих деталей, трущихся относительно друг друга, в зависимости от смазки.
В некоторых случаях антикоррозионные добавки на основе фосфора заметно снижают этот износ, однако, с другой стороны, их наличие сопровождается уменьшением растворимости хладагента в смазке, что является недостатком. Так происходит, например, при смеси с синтетическими маслами семейства полиалкиленгликолей (PAG).

Вязкость

Вязкость может определяться как свойство жидкости создавать сопротивление силам деформации ее элементарных объемов, в общем случае при любом относительном движении этих объемов внутри жидкости. Вязкость является реологической характеристикой. В стандарте NF T60-141 в качестве основы для классификации масел принята международная система классификации, приведенная в стандарте ISO 3448, согласно которой масла различают в зависимости от их средней вязкости, измеренной при температуре 40°С. Классы вязкости располагаются в определенной последовательности от VG 2 до VG 1500, причем вязкость холодильных масел, как правило, соответствует классам от VG 15 до VG 100.
Следовательно, холодильное масло поступает в продажу с указанием средней вязкости при 40°С, что обозначается соответствующим классом вязкости. Однако этот класс вязкости соответствует чистому маслу при вполне определенных температуре (40°С) и давлении (атмосферное давление). Вместе с тем для масла, заправленного в холодильный компрессор, температура и давление будут очень сильно отличаться от приведенных значений, например за очень короткое время температура может возрасти до 200°С, а давление до 10 бар, не считая того, что в масле будет растворяться часть хладагента. С другой стороны, на растворимость хладагента в масле влияют многие факторы, в частности природа хладагента (например, R22 растворяется хуже, чем R12, но лучше, чем R502), природа масла (синтетическое масло, как правило, растворяет лучше, чем минеральное), температура (при понижении температуры растворимость хладагента в масле возрастает) и, наконец, давление (чем ниже давление, тем меньше хладагента растворяется в масле).

Следовательно, вязкость смеси масло/хладагент непрерывно меняется в зависимости от значения всех перечисленных выше параметров в данный момент. Вместе с тем вязкость смеси должна оставаться достаточно высокой, чтобы обеспечить наличие непрерывной и достаточно толстой смазывающей пленки на трущихся поверхностях. Кроме того, высокая вязкость повышает герметичность между сжимающей деталью компрессора (поршнем или винтом) и корпусом камеры сжатия таким образом, чтобы поддерживать как можно более высокое значение объемного КПД.
Вязкость синтетических масел менее чувствительна к изменению температуры.

Химическая стабильность

Химическая стабильность холодильного масла во времени является залогом нормальной работы компрессора. Она зависит от двух основных факторов: температуры и природы используемого хладагента.
Говоря о термической стабильности, следует иметь в виду, что температура среды в зоне нагнетательных клапанов компрессора может достигать 175°С. Хотя в течение одного цикла время нахождения среды при такой температуре очень незначительно, однако в общей сложности за весь срок эксплуатации оно может достигать многосуточных значений. Поэтому проверка термической стабильности масел, называемая тестом Elsey, производится в течение 168 часов, т. е. времени, соответствующего полному сроку службы масла при нормальных условиях работы.
Стойкость масла при воздействии на него хладагента также является очень важным показателем, так как в случае химической реакции масла с хладагентами могут образовываться нежелательные соединения, оказывающие вредное воздействие на нормальную работу установки, в чем мы сможем убедиться ниже. Поэтому стойкость масла проверяется экспериментально путем его выдержки в течение 96 часов при температуре +250° в атмосфере паров хладагента с избытком воздуха при давлении, соответствующем температуре хладагента +40°С.

Среди соединений, которые могут образовываться вследствие химических реакций между маслом и хладагентом, назовем прежде всего такие продукты полимеризации, как отработанная смазка (шлам), вызывающая закупорю. масляных канавок компрессора, и палитура, откладывающаяся на металлических поверхностях, в частности на тарелях клапанов, которые в результате могут залипать и не открывался так, как нужно.
При понижении температуры смесь масла и хладагента может образовывать воскообразные частицы, вследствие чего возможны разного рода аномалии, начиная от заедания подвижных частей регуляторов и заканчивая полной закупоркой .

Еще одной причиной химической нестабильности масла может оказаться присутствие в контуре остатков кислорода, обусловленное недостаточным уровнем контура перед заправкой. В результате окисления масло меняет цвет от бледно-желтого до коричневого или даже черного. Сопротивляемость масла окислению измеряют, нагрев его до температуры 115°С и выдерживая при этой температуре в закрытом сосуде с погруженной в масло медной спиралью. Цвет масла и измерение электрической мощности указывают на стойкость масла к окислению.

Способность к поглощению влаги (гигроскопичность)

Содержание влаги в масле выражается в мг/ кг (или ррт). Если иметь в виду те предосторожности, которые предпринимаются для снижения следов влаги перед заправкой холодильной установки, то становится ясно, что используемое масло должно содержать как можно меньше влаги, чтобы при соединении масла с хладагентом с учетом остаточного содержания влаги после вакуумирования контура полное содержание воды в установке оставалось ниже допустимых пределов.
Определение содержания влаги в холодильных маслах обычно производится по методу Карла Фишера, однако существуют и другие, более общие методы, например азеотропное связывание диметилбензолом.

Содержание золы в масле соответствует сумме массы шлаков, остающихся после полного сжигания масла. Минеральное масло, будучи чистым органическим веществом, обыкновенно сгорает без остатка, поэтому количество золы, образующееся при его сжигании, позволяет измерять количество содержащихся в масле примесей.
Практически воспламененная и медленно сжигаемая пробная порция масла дает углерод-содержащие шлаки, которые прокаливаются в печи при 775°С до полного сгорания углерода.

Температура вспышки

Температура вспышки определяется как минимальное значение температуры, которую необходимо сообщить маслу, чтобы выделяющиеся масляные пары самопроизвольно вспыхнули в присутствии открытого пламени. Подъем температуры масла производится в нормальных условиях, т. е. в открытом тигле при давлении 1013 мбар. Точка вспышки холодильного масла представляет собой показатель, позволяющий оценивать густоту масла и его склонность к выбросу из компрессора. Заметим, что если после достижения температуры вспышки продолжать нагрев масла в открытом тигле, то время горения паров будет все увеличиваться, пока, наконец, не достигнет 5 с. Температура, при достижении которой пламя на поверхности масла держится не менее 5 с. после воспламенения, называется темвературой зажигания. Разница между температурой вспышки и температурой зажигания в общем случае может меняться от 5 до 60 К в зависимости от вязкости.

Точка текучести

Точка текучести определяется как минимальная температура, при которой масло сохраняет текучесть при в нормальных условиях в U-образной трубке. Точка текучести измеряется в °С для скорости подъема масла в U-образной трубке, равной 10 мм/мин.

Показатель омыления (число омыления)

Числом омыления называют количество гидроокиси калия КОН в миллиграммах, прореагировавшее с одним граммом вещества. Образец вещества растворяют в метилэтилацетоне и нагревают, размешивая в течение 30 минут в присутствии избытка гидроокиси калия, растворенной в спирте. После этого остаток непрореагировавшей гидроокиси калия титруют соляной кислотой. Число омыления позволяет определять содержание в масле легко омыляющихся элементов. Любое увеличение числа омыления в процессе эксплуатации свидетельствует об изменении состава масла.

Показатель кислотности (кислотное число )

Показателем кислотности или просто кислотным числом называют количество щелочи в миллиграммах (как правило, гидроокиси калия КОН), необходимое для нейтрализации кислот, содержащихся в одном грамме масла.
Это число зависит от общего количества кислотных продуктов, содержащихся в масле, и выражается кислотным числом TAN (Total Acid Number). Оно меняется в зависимости от типа масла и срока его эксплуатации. Высокое значение кислотного числа указывает в общему случае на перегрев или окисление масла. Присутствие кислот в масле может также указывать на разложение хладагента. Когда в контуре холодильной установки появляются кислоты то прежде всего они воздействуют на медные детали, т.е в первую очередь на обмотку электродвигателей герметичных и полугерметичных компрессоров. Частицы меди при этом могут перемещаться с одних деталей на другие и в яркие концов оседать на некоторых металлических поверхностях, например подшипниках, которые в результате быстро выходят из строя. Это явление называют «омеднением», и легко понять важность периодических проверок кислотности масел в целях предотвращения воздействия кислот на обмотку в самом начале процесса.

Явление пенообразования

При длительной остановке компрессора масло, содержащееся в его картере, насыщается хладагентом, и во время очередного запуска компрессора резкое падение давления в картере и рост температуры приводят к выделению хладагента из масла, сопровождающемуся более или менее значительным вспениванием последнего.
Образование пены порождает две проблемы. Во-первых, пена разрушает масляную пленку в подшипниках, препятствуя их качественной смазке. Во-вторых, происходит интенсивный выброс масла из картера в холодильный контур, что, в свою очередь, вызывает в числе прочего ухудшение теплообмена в местах, где есть опасность его оседания (например, в ). Кроме того, если масла в картере становится меньше, чем необходимо, это ухудшает условия смазки компрессора, что создает опасность его преждевременного износа.
Определение способности масла к пенообразованию осуществляется различными способами: барботажным, в процессе которого данный хладагент прокачивается через слой масла определенной толщины, или прямым испытанием компрессора на вспенивание масла в его картере с наблюдением за уровнем масла путем заглядывания в картер.

Смешиваемость и растворимость масел и хладагентов

Вначале уточним, что в данном случае смешиваемость означает образование однородной среды из масла и жидкого хладагента, а под растворимостью понимается насыщение масла хладагентом в паровой фазе.
Смешиваемость зависит от природы хладагента, типа масла и его температуры и вязкости, а растворимость, кроме перечисленных факторов, еще и от давления (закон Генри). Знание степени смешиваемости масла с хладагентом очень важно, поскольку от нее зависит, хорошо или плохо масло будет возвращаться в компрессор и, исходя из этого, достаточной или несовершенной будет его смазка.
С некоторыми хладагентами масло смешивается полностью, например с RH, R12, R21, R113, R500. При этом смесь представляет собой однородную среду, которая полностью возвращается в компрессор, обеспечивая его нормальную смазку.
С другими хладагентами масло смешивается только частично (R22, R13B1, RH4, R152a, R501, R502), при этом смешиваемость зависит от типа хладагента и температуры.

Некоторые хладагенты, такие, как R13, R14, R115, R503, очень плохо смешиваются с маслом, а что касается R717 (), то у него смешиваемость с маслом практически нулевая В этом последнем случае необходимо предусматривать соответствующим образом расположенные точки . В других случаях следует использовать такие масла, которые не приводят к образованию двухслойных смесей в рабочем диапазоне установки.
Понятие растворимости имеет важное значение для компрессоров, предназначенных к использованию в составе тепловых насосов, поскольку в них давление и температура нагнетания достигают довольно высоких значений. В связи с этим следует отметить, что растворимость хладагентов (кроме аммиака) в полиаль-фаолефиновых маслах хуже, чем в минеральных и, тем более, чем в диалкилбензеновых маслах.
По данным «Учебник по холодильной технике» Польманн 1998.

Определение кислотного числа масла основано на взаимодействии кислот, извлеченных Из масла этиловым спиртом, с едким калием в присутствии индикатора нитразмнового желтого.

Для проведения анализа в измерительный цилиндр с притертой пробкой емкостью 100 мл налить 20 мл спиртового раствора индикатора, затем в этот же цилиндр с помощью шприца налить испытуемое масло в количестве, определяемом по таблице 1. в зависимости от максимально допустимого кислотного числа, установленного для данного сорта масла.

После этого цилиндр закрыть пробкой и встряхивать в течение 1 минуты.

Зеленая и синяя окраска верхнего (спиртового) слоя указывает на то, что кислотное число-масла не превышает допустимой нормы. Желтая окраска спиртового слоя указывает на то, что кислотное число масля превышает норму.

Необходимо выяснить пригодность масла турбинного для дальнейшей эксплуатации. Кислотное число этого масла не должно превышать 1 мг КОН на грамм масла.

Из табл. 1 видно, что для испытания необходимо взять 2 мл масла. После взбалтывания пробы масла с индикатором спиртовой слой окрасился в желтый цвет, следовательно, кислотное число масла превышает норму.

При необходимости определения численного значения кислотного числа анализ проводится следующим образом:

в измерительный цилиндр налить 20 мл спиртового раствора индикатора. Затем с помощью шприца ввести первую дозу масла, соответствующую предельному значению кислотного числа масла (см. табл. 1);

цилиндр закрыть пробкой, пробу взболтать и рассмотреть отслоившийся спиртовой слой. Если цвет слоя не изменился, то долить в цилиндр такое количество масла, чтобы его объем в сумме с первой дозой равнялся объему, соответствующему следующему (меньшему) значению кислотного числа по табл. 1. Если цвет спиртового слоя не изменился и в этот раз, то долить в цилиндр такое количество масла, чтобы весь его объем в цилиндре был равен объему, соответствующему следующему значению кислотного числа и т.д. методом последовательных приближений, пока цвет индикатора не изменится. При изменении цвета -по табл. 1 определить численное значение кислотного числа с учетом объема взятого масла.

Для анализа получено масло МС-20 из маслосистемы двигателя. Предельно допустимое кислотное число, при котором необходима замена масла, равно 0,5 мг КОН на грамм масла. Из табл. 1 видно, что для пробы. необходимо 4 мл масла.

После взбалтывания пробы с индикатором цвет последнего не изменился. Прилить еще 1 мл масла и так до тех пор, пока цвет не изменится.

Предположим, что при наличии 9 мл масла в цилиндре спиртовой слой окрасился в желтый цвет. Значит кислотное число масла равно 0,20 мг КОН/г масла,

Доливать масло нужно в количествах, ири которых будут соблюдены интервалы в объемах масла, указанные в табл. 1. Но для более точного определении можно доливать постоянно по 1 мл масла. При этом значение кислотного числа вычисляется методом интерполирования.

Приготовление индикатора.

Спиртовой раствор нитразинового желтого и едкого кали готовят следующим образом: к 1 л 96% -ного этилового спирта добавляют 7-10 мл 0,5 % водного раствора нитразинового желтого (в 100 мл воды растворяется 0,5 г нитразинового желтого), после чего спирт окрашивается в желто-оранжевый цвет. Затем туда же добавляют по каплям 0,05 спиртовой раствор едкого кали.

Часть полученного нейтрализованного раствора спирта наливают в мерную колбу емкостью 1 литр и туда же добавляют такое количество 0,05 N раствора едкого кали, чтобы в нем содержалось 80 мг едкого кали (28,57 мл 0,05 N раствора едкого кали) и доливают оставшимся спиртом до метки 1 литр, взбалтывая.

Раствор индикатора расфасовывают по 100 мл в пластмассовые бутылочки со специальной укупоркой.

ПРИЛОЖЕНИЯ

Кислотное число, или кислотность жира - количество миллиграммов гидроксида калия, необхо­димое для нейтрализации всех свободных жирных кислот, содержащихся в одном грамме жире. Кислотное число - весьма важный показатель свойств и состояния жира, так как оно может легко увеличиваться при хранении, как жира, так и пищевых продуктов, богатых жиром. Является показателем гидролитической порчи.

В жирах почти всегда имеются свободные жирные кислоты, причем в растительных жирах их концентрация обычно выше, чем в животных жирах.

В процессе созревания семян содержание свободных жирных кислот уменьшается. Поэтому кислотное число используют для оценки степени зрелости семян. На первых этапах созревания семян кислотное число обычно составляет 30-40 мг КОН на 1 г масла, что свидетельствует о низкой скорости синтеза жиров. К концу созревания семян кислотное число снижается до 1,5-2,5. кроме того, содержание кислот резко повышается при прорастании семян вследствие гидролиза жиров.

Принцип метода. Заключается в титровании 0,1 н раствором гидроксида калия жира, растворенного в нейтрализованной смеси спирта и эфира (1:2): RCOOH + KOH ® RCOOK + H 2 O.

По количеству раствора щелочи, пошедшей на нейтрализацию кислот, судят о величине кислотного числа.

Оборудование, реактивы. 1) Баня водяная. 2) Холодильник обратный. 3) Растительное масло. 4) Бюретки. 5) Спирт этиловый. 6) Эфир медицинский. 7) Гидроксид калия, 0,1 н раствор. 8) Фенолфталеин, 1%-ный раствор. 9) Тимолфталеин, 1%-й раствор.

Ход работы

В чистую сухую коническую колбу емкостью 250 мл помещают 3-5 г растительного масла, добавляют 30 мл смеси спирта и эфира (1:2), предварительно нейтрализованной по тому индикатору, который используют для титрования. В полученный раствор приливают 1 мл 1%-го спиртового раствора фенолфталеина и титруют 0,1 н водным раствором гидроксида калия до появления слабо-розового окрашивания.

При исследовании темно-окрашенных жиров в качестве индикатора используют 1% раствор тимолфталеина, который в щелочной среде приобретает синюю окраску.

Вычисление результатов. Кислотное число жира Х (в мг КОН на 1 г жира) рассчитывают по формуле:

где V – объем 0,1 н раствора гидроксида калия, израсходованного на

титрование, мл;

К – коэффициент пересчета на точный 0,1 н раствор гидроксида

m – масса исследуемого жира, г;

5,61 – количество гидроксида калия, соответствующее 1 мл 0,1 н

раствора гидроксида калия, мг.

За окончательный результат принимают среднее арифметическое значение результатов двух параллельных определений.

Содержание жирных кислот в масле можно выражать также не кислотным числом, а количеством свободных кислот в процентах от веса масла. Условно расчеты ведут на свободную олеиновую кислоту, которая является одной из ниаболее распространеных кислот, входящих в большинство растительных масел. Для этого кислотное число умножают на коэффициент 0,503. Этот коэффициент получают из следующего уравнения:

% кислотное число = ,

где 282,3 –молекулярный вес олеиновой кислоты;

56,11– молекулярный вес КОН;

100 – пересчет на процентное содержание;

1000 – пересчет милиграммов в граммы.

Сущность методов заключается в растворении определенной массы растительного масла в смеси растворителей с последующим титрованием имеющихся свободных жирных кислот водным или спиртовым раствором гидроокиси калия или натрия.

Определение кислотного числа светлых и рафинированных масел, в том числе полученного из нерафинированного хлопкового масла.

Пробу испытуемого масла хорошо перемешивают и профильтровывают при 15-20°С.

В коническую колбу отвешивают с погрешностью не более 0,01 г 3-5 г масла, приливают 50 мл нейтрализованной смеси растворителей и взбалтывают.

Если при этом масло не растворяется, его нагревают на водяной бане, охлаждают до температуры 15-20°С.

Спирто-эфирную смесь готовят из двух частейдиэтилового эфира и одной части этилового спирта с добавлением 5 капель раствора фенолфталеина на 50 мл смеси. Смесь нейтрализуют 0,1 н. раствором гидроокиси калия или натрия до едва заметной розовой окраски.

При использовании спирто-эфирной смеси титрование производят водным или спиртовым раствором гидроокиси.

Полученный раствор масла при постоянном взбалтывании быстро титруют 0,1 н. раствором гидроокиси калия или натрия до получения слабо-розовой окраски, устойчивой в течение 30 с.

При титровании 0,1 н. водным раствором гидроокиси калия или натрия количество спирта, принимаемого вместе с эфиром или хлороформом, во избежание гидролиза раствора масла, должно не менее чем в 5 раз превышать количество израсходованного раствора гидроокиси.

При кислотном числе масла свыше 6 мг КОН/г берут навеску масла с погрешностью не более 0,01 г 1-2 г и растворяют ее в 40 мл нейтральной смеси растворителей.

Кислотное число масла (Х 1), мг КОН/г, вычисляют по формуле

где 5,611 – коэффициент, равный значению расчетной массы КОН в 1 мл 0,1 н. раствора КОН, а при использовании NаОН этот коэффициент получают путем умножения расчетной массы NаОН в 1 мл 0,1 н. раствора (равной 4,0) на 1,4 – отношение молекулярных масс КОН и NаОН;

К – поправка к титру 0,1 н. раствора гидроокиси калия или натрия;

V – объем 0,1 н. раствора гидроокиси калия или натрия, израсходованного на титрование, мл;

m – масса масла, г.

ПРИЛОЖЕНИЕ Н

Определение плотности молока

Проведение измерений

Цилиндр с исследуемой пробой устанавливают на ровной горизонтальной повархности и измеряют температуру пробы i 1. Отсчет показаний температуры проводят не ранее, чем через 2-4 мин после опускания термометра в пробку.

Сухой и чистый ареометр опускают медленно в исследуемую пробу, погружая его до тех пор, пока до предполагаемой отметки ареометрической шкалы не останется 3-4 мм, затем оставляют его в свободно плавающем состоянии. Ареометр не должен касаться стенок цилиндра.

Расположение цилиндра с пробкой на горизонтальной поверхности должно быть, по отношению к источнику света, удобным для отсчета показаний по шкале плотности и шкале термометра.

Первый отсчет показаний плотности p 1 проводят визуально со шкалы ареометра через 3 мин после установления его в неподвижном положении. После этого ареометр осторожно приподнимают на высоту до уровня балласта в нем и снова опускают, оставляя его в свободно плавающем состоянии. После установления его в неподвижном состоянии, проводят второй отсчет показаний плотности p 2 . При отсчете показаний плотности глаз должен находиться на уровне мениска. Отсчет показаний проводят по верхнему краю мениска.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама